精度的概念理解起来有点像“大楼和电梯”。一栋大楼被分成许多“层”,也就是“位置”,每一层都有一个“名字”,如“五层”、“八层”等等,而电梯就好比舵机,他只会停在一层的整数倍上,如1的2倍的“二层”、1的16倍的“十六层”,而不会停在两层的中间。同样,一但精度和起始位置确定了,舵机也只会停在“精度”的整数倍上。如果精度还是0.09度,则舵机只会停在0度、0.09度、0.18度……9.09度……的位置。如果放大来看,舵机其实是在“一格一格”地转动。
但刚才所说的还都是舵机的理论精度,实际使用时舵机多少都会受到阻力,由于受到的阻力和舵机内部控制规律共同作用,舵机的实际控制精度要低很多,这点在非数字舵机和小扭力舵机上尤为明显。虽然无法定量分析,但可以做一个简单的实验加以验证:将舵机连接到接收机的任一通道,接通发射机和接收机的电源,用手慢慢转动舵机摇臂,随着用力的加大,会发现虽然舵机会产生很大的反扭力,但摇臂还是会稍稍偏离原来的位置,这时偏离的角度就是舵机当前状态的实际精度,这已远远大于理论精度了。
前面我们了解到舵机的控制精度,现在就要想方设法来尽可能多的利用其精度,来达到最好的控制效果。其实道理也很简单,只要让舵机满行程工作就可以了。
假如舵面要求的偏转角度是±10度,则需要调整舵机摇臂和舵面舵角的使用长度,使舵机±45度的偏转范围对应到舵面的±10度的偏转范围。舵机达到满行程工作,这样不仅没有损失控制精度,同时还减轻了舵机的负荷。
其次,舵机的中立位置不一定要调整到舵面的“零”位。
要具体情况具体分析。以直升机的总距(旋翼迎角)的调整为例,直升机在飞行时需要靠旋翼产生的升力来抵消飞机自身的重量。这就使得直升机在悬停时的旋翼迎角不为零,一般在5~5.5度。而在普通飞行状态的最大迎角和最小迎角分别是10~11度和-2~-5度(在3D飞行中正负迎角基本是相同的,这种特技飞行对操纵者的控制技术要求很高,这里就不作详细论述了)。如果这时还将舵机的中立位置调整到旋翼的0度迎角,再通过调整遥控器的“行程设置”功能,将舵机的正行程限制到10度迎角位置,负行程限制到-2度迎角位置,就会产生两个问题:一是迎角的控制精度下降;二是舵机的动作不均匀。
还以PCM1024设备为例,理论上旋翼在0~10度偏角范围和0~-2度偏角范围都各应有512个分度,但经过上述调整后,如果保证0~10度偏角一侧有512个分度,则在0~-2度偏角一侧就只剩下 512 ╳ 2/10 = 102.4个分度了,一下少分了400多格,总距控制精度降低了80%!原因就在当改变舵机行程时,舵机的原有精度是不变的,缩减行程只是把多余的分度“砍”掉了,而不是把分度“压缩”。
|