|
21、什么是精基准?试述选择精基准的原则。
答:用已加工表面作为定位基准,这种基准称为精基准。
选用精基准的原则是:
(1)选用加工表面的设计基准为定位基准,这就是基准重合原则。
(2)所选用的定位基准能用于多个表面及多个工序的加工,这就是基准统一原则。
(3)当零件加工表面的余量很小时,可以用待加工表面本身定位,即“自身定位”。
(4)所选的定位基准应有较大的装夹表面,其精度应与加工精度相适应。
22、按照基准统一的原则选用精基准有什么优点?
答:按照基准统一的原则所选用的精基准,能用于多个表面的加工及多个工序的加工,可以减少因基准变换带来的 误差,提高加工精度。此外,还可以减少夹具的类型,减少设计夹具的工作量。
23、用不加工表面作为粗基准可起什么作用?为什么粗基准一般只可使用一次?
答:用不加工表面作为粗基准,能使不加工表面对加工表面具有较正确的相对位置,从而达到壁厚均匀,内腔或外形对称的目的。
因毛坯的质量差,重复定位精度很低,若用毛坯面在两次装夹中定位,则所得到的两个加工表面间将出现很大的位置误差,所以粗基准一般只使用一次。
24、工艺尺寸链的计算主要用来解决什么问题?什么叫组成环、封闭环?怎样判别增环和减环?
答:进行工艺尺寸链的计算,可以在基准不重合时进行尺寸换算,也是计算中间工序尺寸的一种科学而又方便的计算方法。
在尺寸链中,能人为地控制或直接获得的尺寸称为组成环。在尺寸链中被间接控制的尺寸,即当其他尺寸出现后自然形成的尺寸,称为封闭环。
增环与减环可按定义在尺寸链图上判别:在其他各组成环不变的条件下,当某组成环的增大会导致封闭环随之增大,则该组成环为增环;同理,当某组成环的增大会导致封闭环随之减小,则该组成环为减环。
此外,也可以用循矢原则予以判别:从封闭环向任一方向出发去依次判断各组成坏,若某组成环的方向是顺着出发方向的,则为减环;若某组成环的方向是与出发方向反向标注的,则为增环。
25、什么是加工精度?什么是加工误差?加工精度有哪些主要内容?
答:零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度,称为加工精度。两者不符合程度称为加工误差。
零件加工精度的主要内容有:尺寸精度、几何形状精度和相互位置精度。
26、零件分粗、精阶段加工,为什么能提高加工精度?
答:精加工时采用很小的切削深度及进给量进行切削,可以在很小的切削力及变形的情况下,修正粗加工中产生的各种误差。此外,粗加工后如将工件放置一段时间,使工件充分变形再进行精加工,可以减小残余应力对加工精度的影响。因此分粗、精阶段加工可以提高加工精度。
27、在加工过程中为什么要消除或尽可能减少工件的残余应力?
答:因为在加工过程中,具有残余应力的工件处于不稳定状态,具有恢复到无应力状态的倾向,在常温下会缓慢地产生变形,丧失其原有的加工精度。此外,具有残余应力的毛坯及半成品,切去一层金属后,使工件产生明显的变形。所以要消除或尽可能减少工件的残余应力。
28、减少工件残余应力的措施有哪些?高温时效和低温时效各适用于处理哪类工件?
答:减少工件残余应力的措施有:
(1)高温时效。
(2)低温时效。
(3)振动去应力。
(4)采用粗、精加工分开的方法。
(5)自然时效。
高温时效适用于铸、锻、焊毛坯及粗加工后的工件。低温时效适用于半精加工后的工件。
29、怎样减少工艺系统热变形造成的误差?为什么精密机床在加工前要空运转一段时间?
答:减少工艺系统热变形造成的误差的措施为:充分冷却,减少温升;机床在热平衡状态下进行加工;在恒温条件下进行精密加工。
精密机床的热变形对加工精度的影响较为明显。由于机床的体积及质量较大,因此从开始升温到其温度基本不变,即达到热平衡状态,需要较长时间。在升温过程中机床持续发生变形,较难控制工件的加工尺寸。所以精密机床在加工前,应空运转一段时间进行预热,待达到热平衡状态后,再进行加工。
30、为什么在外圆磨床上用前、后固定顶尖装夹工件可以提高加工精度?
答:在外圆磨床上用前、后固定顶尖装夹工件,使机床主轴仅起带动作用,这样可以避免主轴回转误差造成加工误差,从而提高加工精度。
31、精密零件为什么要在恒温条件下进行测量?
答:精密零件在恒温条件下进行测量,主要是为了避免因工件与量具热膨胀系数的不同而造成的测量误差。
32、机械加工的表面质量包括哪些方面?表面质量对零件的使用性能有什么影响?
答:表面质量是指零件加工后的表面层状态,是衡量机械加工质量的一个重要方面。它包括表面粗糙度、表面层金属的金相组织状态、力学性能和残余应力的大小及性质。
表面质量对零件使用性能的影响可分为:
(1)表面粗糙度的影响 表面粗糙度影响配合性质、耐磨性、疲劳强度及耐蚀性。
(2)冷作硬化层的影响 冷作硬化能提高零件的耐磨性,但过度硬化会使表面产生细小的裂纹及剥落,加剧零件的磨损。
(3)表面残余应力的影响 零件表层在加工或热处理过程中若产生压应力,可适当提高零件的疲劳强度。
33、工件表面产生加工硬化的原因是什么?对零件的工作性能有什么影响?
答:工件表面在加工过程中产生强烈的塑性变形后,表面的强度、硬度都得到提高,并达到一定的深度,这叫加工硬化。由于加工硬化提高了表面的硬度,可提高零件的耐磨性。加工硬化程度越高,其耐磨性越好,但有一定限度,过度的硬化会使表面产生细小的裂纹及剥落,加剧磨损。
34、影响工件表面粗糙度的主要因素有哪些?可采用哪些方法减小表面粗糙度值?
答:影响工件表面粗糙度的因素很多,归纳起来主要有以下四点:
(1)刀具几何参数。
(2)切削用量。
(3)积屑瘤与鳞刺。
(4)振动。
凡是能减小残留面积及其高度的、减小振动的、减小或抑制积屑瘤高度及鳞刺的方法均能减小表面粗糙度值。从刀具几何参数上,可适当减小副偏角和增大刀尖圆弧半径,必要时可磨出修光刃,从切削用量上,可适当减小进给量。还可从减小刀具与工件间的摩擦、挤压上着手,使刀具刃磨得锋利,加注切削液和对某些韧性好的工件材料进行适当的热处理等。
35、什么是强迫振动?什么是自激振动?各有什么特点?
答:强迫振动是指由外界周期性的干扰力引起的振动。强迫振动的频率与干扰力的频率一致,当干扰力的频率与工艺系统的自振频率一致时,将产生“共振”,出现最大的振幅。
自激振动是指从切削部位吸收的能量而产生的振动。自激振动与切削同时存在,停止切削振动也就停止,且振动频率等于或接近振动部件的自振频率。
36、生产中可采取哪些措施来消除或减小振动?
答:对于强迫振动,只要找出干扰力的来源,并设法消除,一般可消除振动。
对于自激振动,可采取下列措施来减小或消除:
(1)提高工艺系统的刚性,特别要提高工件、长镗杆、尾座及薄弱环节的刚度。
(2)减小运动部件的间隙。
(3)修磨刀具及改变刀具的装夹方法,改变切削力的方向,减小作用于工艺系统低刚度方向的切削力。
(4)改变刀具的几何参数。
消除高频振动除增大刀具及工件的刚性外,还可采用冲击式消振装置,如冲击式消振刀杆等。
37、机床夹具由哪几部分组成?各起什么作用?
答: 机床夹具的组成部分及作用为:
(1)定位元件 用于确定工件在夹具中的位置使工件在加工时相对刀具及运动轨迹有一个正确的位置。
(2)夹紧装置 用于保持工件在夹具中的既定位置,使它不致因加工时受到外力的作用而改变原定的位置。
(3)对刀元件 用来确定夹具相对于刀具的位置。
(4)夹具体 用于连接夹具上各个元件或装置,使之成为一个整体的基础件。夹具体也用来与机床有关部位相连接。
(5)其他元件和装置 根据需要,夹具上还可以有其他组成部分,如分度装置等。
38、对机床夹具的夹紧装置有哪些基本要求?
答:对机床夹具的夹紧装置的基本要求是:
(1)夹紧时不应破坏工件在定位时所得到的位置。
(2)夹紧应可靠和适当,既要使工件在加工过程中不产生移动或振动,又不使工件产生过大的变形和损伤。
(3)夹紧装置应使操作安全、方便、省力、迅速。
(4)夹紧装置必须保证不因毛坯或半成品的制造公差而使工件夹不紧或产生过度的变形。
(5)夹紧装置的自动化程度及复杂程度应与产品的生产类型相适应。
39、什么是夹紧力三要素?怎样确定夹紧力的方向?
答:夹紧力的三要素是方向、大小和作用点。
确定夹紧力的方向时,一般应遵循下述原则:
(1)夹紧力作用方向应有助于工件定位的准确性。
(2)夹紧力方向应尽可能使所需夹紧力减小。
(3)夹紧力方向应尽可能使工件变形减小。
40、如何确定夹紧力的作用点?
答:确定夹紧力的作用点时,应尽量做到以下几点:
(1)夹紧力的作用点应落在夹具的支承元件上或几个支承元件所形成的支承面内。
(2)夹紧力的作用点应尽量靠近加工面,若工件形状特殊,夹紧力作用点无法靠近加工面时,可增添辅助支承。
(3)夹紧力的作用点应落在工件刚度较好的部位。 |
|