5iMX宗旨:分享遥控模型兴趣爱好

5iMX.com 我爱模型 玩家论坛 ——专业遥控模型和无人机玩家论坛(玩模型就上我爱模型,创始于2003年)
查看: 1882|回复: 0
打印 上一主题 下一主题

航空模型的普及知识大全十(直升机篇)

[复制链接]
跳转到指定楼层
楼主
发表于 2008-2-28 03:56 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
一 油门
油门是所有动作中负载最轻的部位,且负载不会受到外在因素的影响而改变,所以选择油门伺服机时,扭力不是问题(1 就绰绰有馀),速度才是关键。因为直升机的油门与螺距作混控,故油门与螺距伺服机的速度最好要一致,才不会发生螺距伺服机已到达定位,油门伺服机却姗姗来迟的情况。尤其作剧烈的3D飞行时,油门与螺距的变化量极大,若油门与螺距伺服机的速度不协调,会发生马力延迟的状况。
油门伺服机的速度并不是愈快愈好,因为还要考虑引擎的反应时间。引擎必须经过吸气、压缩、爆炸、排气这一连串的步骤,尤其直升机用的引擎并不属於高转速型,因此伺服机的速度如果太快,就会产生引擎运转速度跟不上伺服机的动作,进而出现油气混合比不适当的状况。建议采用速度为 0.19~0.24 秒的伺服机。
三 副翼及升降舵
30 级及 46 级的直升机应选择扭力 3kg 以上的伺服机,60 级的直升机则需选择扭力 5kg 以上的伺服机。副翼及升降舵的反应速度,主要是由主旋翼转速及平衡翼片的重量所控制,与伺服机的速度快慢,较无明显且直接的关联,所以不需使用太快的伺服机。建议采用速度为 0.20~0.26 秒的伺服机。
四 螺距
直升机的主旋翼螺距是出了名的重负载,因此螺距伺服机的扭力一定要够,最好能选择扭力 5kg 以上的伺服机。建议采用速度为 0.19~0.24 秒的伺服机。
五 尾舵
尾舵伺服机的扭力不需太大,3kg 就已经足够了。请依据您所使用的陀螺仪等级来搭配尾舵伺服机。机械式陀螺仪因为反应速度较慢,因此无需使用高速伺服机。压电式陀螺仪需搭配高速伺服机,才能发挥陀螺仪的性能。高级的陀螺仪都会指明建议使用的伺服机,例如 JR 5000T 陀螺仪建议搭配 NES-8700G 伺服机,Futaba GY-501 陀螺仪建议搭配 S-9205 伺服机。若您使用的压电式陀螺仪并无特别指明伺服机的类型,建议您购买速度愈快的伺服机愈好。
如何以最经济的方式购买合用的伺服机,请参考下列步骤∶
1.先决定螺距伺服机,选择扭力 5kg 以上的伺服机,再依据预算的多寡决定伺服机的速度。
2.依照螺距伺服机的速度,选择同速度但扭力小的伺服机,作为油门伺服机。
3.依据直升机的级数大小,选择扭力为 3kg 或 5kg 以上,速度为 0.20~0.26 秒的伺服机,作为副翼及升降舵伺服机。
4.依据陀螺仪的等级来决定尾舵伺服机的速度,愈高级的陀螺仪才需使用高级的伺服机。

若您使用 CCPM 的直升机,因为是由副翼、升降舵及螺距伺服机采混控的方式共同来推动十字盘,所以这三个动作要选择同型号的伺服机。CCPM 的优点是连杆数少、传动直接、虚位小,并且可减轻伺服机的负荷,延长伺服机的使用寿命。
爱惜您的伺服机
一般说来伺服机并不需要特别的保养,只要注意下列重点,就可使您的伺服机长命百岁。
1.直升机的机械可动部份,不可小於伺服机的行程活动范围。
2.不要随意改变电源电压,例如接收机用 4.8V,请勿为了提升伺服机的性能而改用 6.0V。
3.避免伺服机过度负载,依照工作的性质与摆臂的长度,决定扭力的大小。
4.善用避振垫圈来保护伺服机,安装伺服机时不可过度锁紧,造成避振垫圈变形。
5.更换伺服机齿轮时必须使用陶瓷系润滑油,请勿使用矿物系润滑油,以免造成塑胶齿轮变质,容易断裂。
6.若您的伺服机没有防水防尘的功能,请避免让水或尘土跑进伺服机内。
使用心得
国内的伺服机市场与遥控器的市场一样,几乎是 JR 与 Futaba 的天下。用过这二种品牌的伺服机後,发觉 JR 与 Futaba 的伺服机除了接头样式不同之外,正逆转的方向也正好相反。另外 Futaba 伺服机电线的包皮,比较容易产生破皮的现象。对於厂商无法统一伺服机的接头样式、电线色彩、排列顺序与正逆转方向深感无奈。若您想搭配不同厂牌的遥控系统与伺服机,请先查明电线的排列顺序,三条线分别为电源线、接地线与讯号线。

正确调整舵机和连杆
许多爱好者在调整飞机时,特别是初学者,往往会忽略了舵机和连杆调整的细节,尤其是采用高档遥控器,认为只要连杆和舵机连接上了,后面就全用遥控器来调整,最后舵面上下能“停”在要求的位置就可以了。其实这种忽略“过程”的“潇洒”调整必定会使飞机的操纵性能下降,还“浪费”了舵机宝贵的控制精度。


笔者通过多年的实践,总结出一些安装和调整舵机和连杆的要点,希望对广大爱好者,特别是初学者有所帮助。

首先,是要尽可能多的利用舵机的控制精度。

我们可以从一些遥控器的型号中了解到遥控器的精度,如PCM1024 就表明该设备是10位精度的,其内部的AD转换精度是10位,能将参考电压分成210份……(这么一直说下去太难理解,也就能蒙蒙专业人员,下面按普通话说……)
“1024"的意思就是将操纵杆的行程等分为1024个位置,并给每个位置排一个编号,如将操纵杆推到最上面的位置叫“0",把向下的一个位置叫“1",把再向下的一个位置叫“2"......以此类推,操纵杆推到最下面的位置叫“1023",共1024个位置。这样操纵杆的每一个位置就都有了一个“名字”,发射机只需要将一个位置的“名字”通过接收机告诉舵机,舵机就可以根据这个“名字”把舵机摇臂转到相对应的角度了。对于舵机来说,一般舵机的旋转范围是±45度,如果发射机的精度还是1024,则舵机就是按±45度得范围等分成1024个位置,简单做一下除法可以计算出舵机的理论最小分度是:90度/1024≈0.09度,这就是舵机的理论精度。

精度的概念理解起来有点像“大楼和电梯”。一栋大楼被分成许多“层”,也就是“位置”,每一层都有一个“名字”,如“五层”、“八层”等等,而电梯就好比舵机,他只会停在一层的整数倍上,如1的2倍的“二层”、1的16倍的“十六层”,而不会停在两层的中间。同样,一但精度和起始位置确定了,舵机也只会停在“精度”的整数倍上。如果精度还是0.09度,则舵机只会停在0度、0.09度、0.18度……9.09度……的位置。如果放大来看,舵机其实是在“一格一格”地转动。

但刚才所说的还都是舵机的理论精度,实际使用时舵机多少都会受到阻力,由于受到的阻力和舵机内部控制规律共同作用,舵机的实际控制精度要低很多,这点在非数字舵机和小扭力舵机上尤为明显。虽然无法定量分析,但可以做一个简单的实验加以验证:将舵机连接到接收机的任一通道,接通发射机和接收机的电源,用手慢慢转动舵机摇臂,随着用力的加大,会发现虽然舵机会产生很大的反扭力,但摇臂还是会稍稍偏离原来的位置,这时偏离的角度就是舵机当前状态的实际精度,这已远远大于理论精度了。

前面我们了解到舵机的控制精度,现在就要想方设法来尽可能多的利用其精度,来达到最好的控制效果。其实道理也很简单,只要让舵机满行程工作就可以了。

假如舵面要求的偏转角度是±10度,则需要调整舵机摇臂和舵面舵角的使用长度,使舵机±45度的偏转范围对应到舵面的±10度的偏转范围。舵机达到满行程工作,这样不仅没有损失控制精度,同时还减轻了舵机的负荷。



其次,舵机的中立位置不一定要调整到舵面的“零”位。

要具体情况具体分析。以直升机的总距(旋翼迎角)的调整为例,直升机在飞行时需要靠旋翼产生的升力来抵消飞机自身的重量。这就使得直升机在悬停时的旋翼迎角不为零,一般在5~5.5度。而在普通飞行状态的最大迎角和最小迎角分别是10~11度和-2~-5度(在3D飞行中正负迎角基本是相同的,这种特技飞行对操纵者的控制技术要求很高,这里就不作详细论述了)。如果这时还将舵机的中立位置调整到旋翼的0度迎角,再通过调整遥控器的“行程设置”功能,将舵机的正行程限制到10度迎角位置,负行程限制到-2度迎角位置,就会产生两个问题:一是迎角的控制精度下降;二是舵机的动作不均匀。

还以PCM1024设备为例,理论上旋翼在0~10度偏角范围和0~-2度偏角范围都各应有512个分度,但经过上述调整后,如果保证0~10度偏角一侧有512个分度,则在0~-2度偏角一侧就只剩下 512╳2/10= 102.4个分度了,一下少分了400多格,总距控制精度降低了80%!原因就在当改变舵机行程时,舵机的原有精度是不变的,缩减行程只是把多余的分度“砍”掉了,而不是把分度“压缩”。
探讨遥控模型失控的原因
    『NO控!』......相信这一句话是每个玩遥控模型的恶梦。无线电波干扰所造成的失控事件,无疑是遥控模型迷们的最大恶梦,失控所造成的意外事件,更可能会波及他人生命财产安全!这样的问题你能不注意吗?其实只要有正确的观念,『失控』的意外是可以被避免的。
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

关闭

【站内推荐】上一条 /2 下一条

快速回复 返回顶部 返回列表